Interview Documentation
Release v1.0.0

Aditya Raman

2022-09-11

IT

TABLE OF CONTENTS

Data Structures 3
Array 5
1.1 Static Array e e e 5
1.2 Complexity o oo e e e e e 5
1.3 Array Operations v v v v it e 5
1.4 TImportant Problems e e e e e 6
Stack 7
2.1 CompleXity . . . v v o e 7
2.2 Stack Operations v v v v v i e 7
2.3 Important Problems e 8
Linked List 9
3.1 Wherearetheyused e e e e e 9
32 Prosand COns v i i e e e e e e e e e e e 9
33 Complexity e e 9
34 Node e e e e e e 10
3.4.1 Defining the node foraLinked List 10

3.5 Search e e 10
3.6 Inserto e e 11
3.6.1 Imsertathead e 11

3.6.2 InsertatTail o e e e e e e e e e 11

3,63 InsertatanIndex 11

37 Delete. . . . o e e e e e 12
3771 Deleteathead e e 12

372 Deleteat Tail e e e e e 12

373 DeleteatIndex e 13

3.8 Important Problems e e e e e 13
3.8.1 Leetcode Problems e 13
Algorithms 15
Array 17
4.1 Boyer—Moore majority vote algorithm Lo 17
411 DesCription v v vt e 17

4.1.2 Python. o e e e e e e 17

4.1.3 Implementation L e 18
Linked List 19
5.1 Floyd’s Tortoise and Hare ittt e e 19
ST Description oo e e e e e e e e e e 19

5.1.2 Python. oL 20

5.1.3 Implementationo e e e e e e 21

6 Searching

6.1 LinearSearch
6.1.1 Description o .. e e e e e e e e e e e e
6.1.2 Python. e
6.1.3 Implementationo e e e e e e
6.2 Binary Search e
6.2.1 DesCription i i e
6.2.2 Python. e e
6.2.3 Implementation L e e
Sorting
7.1 BubbleSort.
7.1.1 Descriptionl e e e
712 Python. oo e e e
7.1.3 Implementation e e
7.2 Selection SOIt. L e e
72,1 DesCription v v v v i e e e e e e e e e e e e e e e e
722 Python. o e e e e e
7.2.3 Implementation Lo e e e e e e e
7.3 Insertion SOTt o oL e e e e e
731 DesCription v v v i e e e e e e e e e e e e e e e e
732 Python. o e e e e e e
7.3.3 Implementation e
T4 Merge SOrt o o e e e e e e e e e e e
741 Description e e e
742 Python. e
7.4.3 Implementationo e e e e e e e e e e e e e e
7.5 QUuUICK SOrt e e e e e e e
7.5.1 Description L e e
752 Python. o e
7.5.3 Implementation e e

Two Pointers

8.1

Description e e
1.1 Variations e e e e e
8.1.2 Implementation it e e e e e e e e e e e e e e e

III Networking

9 1P Address

9.1

IPv4 . o e

IV Interview

10 Interview Preparation

10.1
10.2
10.3

10.4

10.5
10.6

10.7

Interview Best Practices L e
Common Mistakes o e e e e e
Typesof Inerviews L L e
10.3.1 PhonelInterview L
10.3.2 Types of INtErviewers o v v i i e e e e e e e e e e e e e
1033 Youneedtodo
Analyzing the Job Description L
10.4.1 Tocreate your Job Description
Answering Inappropriate Questionso
General Standards
10.6.1 Why dressing is important o v v v vt e e e e e e e e e e e
Overcoming NErves ot ittt e e e e e

23
23
23
24
24
24
24
25
25

27
28
28
28
28
28
29
29
29
29
29
30
30
30
30
31
31
31
31
32
32

33
33
33
33

35

37
37

11 Networking

V Technical Interview

12 Python Interview Questions

VI Resources

13 Resources
13.1 Books.
13.2 Competitive Coding .
13.3 Online Study Materials

14 Credits

15 Collaborators

16 Indices and tables
Python Module Index

Index

45

47
49

51

53
53
53
53

55
57
59
61

63

Interview Documentation, Release v1.0.0

DATA
STRUCTURES ¢ as_a1900:
AND 7 while not optimal:
ALGORITHMS. ;i

\\ memory -= 1
N \

7/ \\‘ N
”t/ > ﬂ NN return optimal
NanLin
9 770
794 AN

TABLE OF CONTENTS 1

Interview Documentation, Release v1.0.0

2 TABLE OF CONTENTS

Part I

Data Structures

CHAPTER
ONE

1.1 Static Array

ARRAY

Important: A static array is a fixed length container containing n elements indexable from the range [0 , n-1]

1.2 Complexity

Static Array | Dynamic Array
Access o) o)
Search O(n) O(n)
Insertion NA O(n)
Appending | NA o)
Deletion NA O(n)

1.3 Array Operations

class array_operation
Bases: object

All the operations associated with list
delete_at_end()

delete_ at_index (index)
delete_ele (ele)

display ()

get (index)

insert_at_end (ele)
insert_at_index (ele, index)

search (key)

class array_ operation:
"""All the operations associated with Array"""

def _ init_ (self):
self.array = []

(continues on next page)

Interview Documentation, Release v1.0.0

(continued from previous page)

def get (self, index):
if index < len(self.array):
return self.array[index]
return -1

def insert_at_end(self, ele):
self.array.append(ele)
return

def insert_at_index(self, ele, index):
self.array.insert (index, ele)
return

def delete_at_end(self):
if len(self.array) > 0O:
return self.array.pop ()
return -1

def delete_ele(self, ele):
res = self.search(ele)
if res == -1:
return res
self.array.remove (ele)
return res

def delete_at_index(self, index):
if index < len(self.array):
return self.array.pop (index)
return -1

def search(self, key):
for i in range(len(self.array)):
if self.array[i] == key:
return i
return -1

def display(self):
for i in range(len(self.array)):
print ("{0} ".format (self.array([i]), end=" ")
print ()

1.4 Important Problems

6 Chapter 1. Array

CHAPTER
TWO

STACK

Important: Stack is a data structure where we store data with the rule Last In First Out (LIFO).

¢ Used in recursion.

¢ Valid Parenthesis.

tion.

Warning: In python stack is implemented using list, the stack class here is just to tell about the implementa-

2.1 Complexity

2.2 Stack Operations

class Stack (size)
Bases: object

Time
Insertion | O(1)
Deletion | O(1)

In python, stack doesn’t make any sense as list has all inbuilt methods for the same But algorithm works as

demonstrated below
display ()
get_top ()
overflow ()
pop () — int
push (ele) — None

underflow () — bool

class Stack:

def _ init_ (self, size):
self.stack = []
self.size = size # fixed sized stack
self.top = -1 # index of stack

def push(self, ele) —> None:

(continues on next page)

Interview Documentation, Release v1.0.0

(continued from previous page)

def

def

def

if not self.overflow():
self.top += 1
self.stack.append(ele)
else:
print ("Stack Overflow")

pop(self) -> int:
if not self.underflow():
self.top —= 1
return self.stack.pop()
print ("Stack Underflow")
return -1

underflow(self) —> bool:

if self.top == —-1:
return True

return False

overflow(self):

if self.top == self.size - 1:

return True
return False

2.3 Important Problems

Chapter 2. Stack

CHAPTER
THREE

LINKED LIST

Important: A linked-list is a sequential list of nodes that hold data which point to other nodes also containing

data

3.1 Where are

e Used in many list,

they used

queue & stack implementation

* For creating Circular List

* Used in separate chaining, which is present certain hashtable implementations to deal with hashing colli-

sions

* Often used in the implementation of the adjacency lists for graph

3.2 Pros and Cons

Pros Cons
Singly Linked List « Uses Less Memory Can’t easily access previous ele-
. . ments
» Simpler Implementation
Doubly Linked List Can be Traversed backwards Takes 2x memory

3.3 Complexity

Singly Linked List | Doubly Linked List
Search O(n) O(n)
Insert at Head O(1) o)
Insert at Tail O(1) o(1)
Remove at Head O(1) O(1)
Remove at Tail O(n) o(1)
Remove in middle | O(n) O(n)

class LinkedList
Bases: object

Operations associated with the Linked List

Interview Documentation, Release v1.0.0

add_at_index (index: int, val: int) — None
Add a node of value val before the index-th node in the linked list. If index equals to the length of
linked list, the node will be appended to the end of linked list. If index is greater than the length, the
node will not be inserted.

delete_ at_index (index: int)
Delete the index-th node in the linked list, if the index is valid.

get (index: int)
Get the value of the index-th node in the linked list. If the index is invalid, return -1.

insert at head (data)
Insert at head

insert_at_tail (data)
Insert at the tail

search (data)
To search the given data in the Linked list and find it’s first occurrence, if it is not present return -1

3.4 Node

3.4.1 Defining the node for a Linked List

Node (data: int)

def Node (data) :
data = data
next = None

’head = None

3.5 Search

search (data: int)

def search(data) :

mmn

To search the given data in the Linked list and find it's first occurrence,
if it is not present return -1

mon

curr = head

index = 0
while curr:
if curr.data == data:

return index
index += 1
curr = curr.next
return -1

10 Chapter 3. Linked List

Interview Documentation, Release v1.0.0

3.6 Insert

3.6.1 Insert at head

insert_at_head (data: int)

def insert_at_head(data) :
"""Insert at head """
new_node = Node (data)
new_node.next = head
head = new_node

3.6.2 Insert at Tail

insert_at_tail (data: int)

def insert_at_tail (data):
"""Insert at the tail"""
new_node = Node (data)
If there is no element in the linked list then add it to the head
if head is None:
head = new_node
else:
curr = head
while curr.next:
curr = curr.next
curr.next = new_node

3.6.3 Insert at an Index

insert_at_index (data: int)

def insert_at_index (data):
mmwn
Add a node of value val before the index—-th node in the linked list. If index_,
—equals to the length of linked
list, the node will be appended to the end of linked list. If index is greater,
—than the length, the node will
not be inserted.
mmwn
index -= 1
new_node = Node (val)
if not head:
head = new_node
return
curr = head
if index < 1:
new_node.next = head
head = new_node
return
else:
count = 0
prev = head
while curr:
count += 1

if count == index:
new_node.next = curr.next
curr.next = new_node

(continues on next page)

3.6. Insert 11

Interview Documentation, Release v1.0.0

(continued from previous page)

return

prev = curr
curr = curr.next

if count == index:
curr.next = new_node
return

else:
prev.next = new_node
return

3.7 Delete

3.7.1 Delete at head

delete _head()

def delete_head():

if not head:
return -1

else:
value = head.data
temp = head.next
head = None
head = temp
return value

3.7.2 Delete at Tail

delete tail ()

def delete_tail():
if not head:
return -1
else:
curr = head
if not curr.next:
value = curr.data
head = None
return value
while curr.next.next:
curr = curr.next
value = curr.next.data
curr.next = None
return value

12 Chapter 3. Linked List

Interview Documentation, Release v1.0.0

3.7.3 Delete at Index

delete_at_index (index: int)

def delete_at_index(index: int):

mmn

Delete the index—-th node in the linked 1ist,
index -= 1
if head is None:
return -1
head
if index == 0:
curr.data
curr.next

curr =

value =
head =

if the index is valid.

return
elif index
return
else:
for i
cu
if

value
< 0:
-1

in range(index - 1):
curr.next
curr is None:

rr =

break
if curr is None:
return -1
if curr.next is None:
return -1
value = curr.data
next = curr.next.next
curr.next = None
curr.next =
return value

next

3.8 Important Problems
3.8.1 Leetcode Problems

Table 1: Linked List Cycle

SI'No Level Questions Solutions Tags

141 Easy Linked List Cycle! Python? Two Pointers

142 Medium | Linked List Cycle II° Python* Hash Table

2 Medium | Add Two Numbers® Python® Traversal

19 Medium | Remove Nth Node From End | Python® Two Pointers
of List

! https://leetcode.com/problems/linked-list-cycle/

2 https://github.com/ramanaditya/data-structure- and-algorithms/tree/main/leetcode/linked-list/linked- list-cycle.py

3 https://leetcode.com/problems/linked-list-cycle-ii/

4 https://github.com/ramanaditya/data- structure-and- algorithms/tree/main/leetcode/linked-list/linked-list-cycle-ii.py

5 https://leetcode.com/problems/add- two-numbers/

6 https://github.com/ramanaditya/data- structure-and-algorithms/tree/main/leetcode/linked-list/add- two-numbers.py

7 https://leetcode.com/problems/remove-nth-node-from-end-of-list/

8 https://github.com/ramanaditya/data-structure-and-algorithms/tree/main/leetcode/linked- list/remove-nth-node- from-end- of-list/

3.8. Important Problems

13

https://leetcode.com/problems/linked-list-cycle/
https://github.com/ramanaditya/data-structure-and-algorithms/tree/main/leetcode/linked-list/linked-list-cycle.py
https://leetcode.com/problems/linked-list-cycle-ii/
https://github.com/ramanaditya/data-structure-and-algorithms/tree/main/leetcode/linked-list/linked-list-cycle-ii.py
https://leetcode.com/problems/add-two-numbers/
https://github.com/ramanaditya/data-structure-and-algorithms/tree/main/leetcode/linked-list/add-two-numbers.py
https://leetcode.com/problems/remove-nth-node-from-end-of-list/
https://leetcode.com/problems/remove-nth-node-from-end-of-list/
https://github.com/ramanaditya/data-structure-and-algorithms/tree/main/leetcode/linked-list/remove-nth-node-from-end-of-list/

Interview Documentation, Release v1.0.0

14 Chapter 3. Linked List

Part 11

Algorithms

15

CHAPTER
FOUR

ARRAY

4.1 Boyer—Moore majority vote algorithm

boyer_moore_voting_ algorithm (arr: list) — int
Parameters arr — list

Returns int

4.1.1 Description
To find the majority element from the sequence, majority means the element should be present more than n/2 times
the total length, n, of the sequence.

If no such element occurs, then algorithm can return any arbitrary element, and is not guaranteed that this element
will be the mode or occurred maximum number of times.

Important:
e Linear TIme

» Constant Space

See also:

Reference : wiki’

4.1.2 Python

def boyer_moore_voting_algorithm(arr: list) -> int:
mmwn
:param arr: 1list
rreturn: int
mmwn
res = arr[0] # Initialization
counter = 0 # Counter

for i in range(len(arr)):
if counter ==
res = arr[i]
counter = 1
elif res == arr[i]:
counter +=
else:

(continues on next page)

9 https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_majority_vote_algorithm

17

https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_majority_vote_algorithm

Interview Documentation, Release v1.0.0

(continued from previous page)

counter —= 1

return res

4.1.3 Implementation

Table 1: LeetCode

SINo

Level

Questions

Solutions

Tags

169

Easy

Majority Element'®

Python'!

10 https://leetcode.com/problems/majority-element/
1 https://github.com/ramanaditya/data- structure-and-algorithms/blob/main/leetcode/array/majority-element.py

18

Chapter 4. Array

https://leetcode.com/problems/majority-element/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/majority-element.py

CHAPTER
FIVE

LINKED LIST

5.1 Floyd’s Tortoise and Hare

class FloydTortoiseAndHare
Implementation of Floyd’s Tortoise and Hare Algorithm

check_cycle (head)
Return True if cycle is present else False :param head: :return:

cycle_node (head)
Finding the node where cycle exists :param head: :return:

class FormLinkedList (array, ind)
Class to form linked-list with cycle

createll ()
Function to create linked-list with cycle :return:

class Node (data=0, next=None)
Node for the linked-list

5.1.1 Description

Floyd’s cycle-finding algorithm is a pointer algorithm that uses only two pointers, which move through the se-
quence at different speeds. It is also called the tortoise and the hare algorithm

Checking the existence of the cycle in the linked-list. We can also find the node with which linked-list is linked

Important:
e Linear TIme

* Constant Space

See also:

Reference : wiki'2

12 hitps://en.wikipedia.org/wiki/Cycle_detection

19

https://en.wikipedia.org/wiki/Cycle_detection

Interview Documentation, Release v1.0.0

5.1.2 Python

Check For Cycle

def check_cycle(self, head):
mmwn
Return True is cycle is present else False
:param head:
:return:
mmwn
Two pointers
tortoise, hare = head, head

Base Case

while hare and hare.next:
tortoise = tortoise.next
hare = hare.next.next

Condition for cycle
if tortoise == hare:
return True

Condition when there is no cycle
return False

Get the Node where cycle exists

—

def cycle_node(self, head):

mmn

Finding the node where cycle exists
:param head:

rreturn:

mrmmn

Two pointers

tortoise, hare = head, head

while True:
Condition when pointer reaches to end

if not hare or not hare.next:
return None

tortoise = tortoise.next
hare = hare.next.next

if tortoise == hare:
break

Iterating over the 11 to find
tortoise = head

while tortoise != hare:
tortoise = tortoise.next
hare = hare.next

Returning node where cycle was found
return tortoise

20 Chapter 5. Linked List

Interview Documentation, Release v1.0.0

5.1.3 Implementation

Table 1: LeetCode

SI No Level Questions Solutions Tags

141 Easy Linked List Cycle™ Python'™ Two Pointers

142 Medium | Linked List Cycle 1T Python!® Hash-Table, Two
Pointers

13 https://leetcode.com/problems/linked- list-cycle/

14 https://github.com/ramanaditya/data- structure- and- algorithms/blob/main/leetcode/array/majority-element.py

15 https://leetcode.com/problems/linked-list-cycle-ii/

16 https://github.com/ramanaditya/data- structure-and- algorithms/tree/main/leetcode/linked- list/linked-list-cycle-ii.py

5.1. Floyd’s Tortoise and Hare 21

https://leetcode.com/problems/linked-list-cycle/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/majority-element.py
https://leetcode.com/problems/linked-list-cycle-ii/
https://github.com/ramanaditya/data-structure-and-algorithms/tree/main/leetcode/linked-list/linked-list-cycle-ii.py

Interview Documentation, Release v1.0.0

22

Chapter 5. Linked List

CHAPTER

SIX
SEARCHING
Table 1: Search Algorithms
SI No. Algorithm Worst Time | Average Best Time Memory
Time
1 Linear Search
1 n 1 1
2 Binary Search
log(n) log(n) 1 1

6.1 Linear Search

class LinearSearch
Bases: object

linear_search (array, key)

6.1.1 Description

This is a search algorithm that iterates over each element to find the key element

If key is found it will return the position else -1

Important:
TIme Complexity
e Worst Case: O(n)
* Average Case: O(n)
¢ Best Case: O(1)
Space Complexity: O(1)

23

Interview Documentation, Release v1.0.0

6.1.2 Python

class LinearSearch:
def linear_search(self, array, key):
for i in range(len(array)):
if array[i] == key:
return i
return -1

6.1.3 Implementation
6.2 Binary Search

class BinarySearch
Bases: object

binary_search (array, key)

6.2.1 Description

Binary Search is a sorting algorithm, applied on sorted array in which we select the mid element and compare key
to the mid element if key is smaller then we search before mid else after mid.

If key is found we return the index of key else -1.

Attention:
Finding problems associated with Binary Search
* list/array is sorted
* Have to find element within the sorted list

* Can be used in case of binary values as well eg., [0,0,0,1,1,1,1]

Important:

TIme Complexity
* Worst Case: O(log(n))
* Average Case: O(log(n))
¢ Best Case: O(1)

Space Complexity: O(1)

24 Chapter 6. Searching

Interview Documentation, Release v1.0.0

6.2.2 Python

class BinarySearch:
def binary_search(self, array, key):
low = 0
high = len(array) - 1
while low <= high:
mid = low + (high - low) // 2
if array[mid] == key:
return mid
elif array([mid] < key:
low = mid + 1
else:
high = mid - 1
return -1

6.2.3 Implementation

Table 2: LeetCode

SI'No Level Questions Solutions Tags
704 Easy Binary Search!’ Python™
367 Easy Valid Perfect Square™ Python”™
278 Easy First Bad Version’! Python”?
74 Medium | Search a 2D Matrix> Python*

17 https://leetcode.com/problems/binary-search/

18 https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/binary-search/binary-search.py

19 https://leetcode.com/problems/valid- perfect-square/

20 https://github.com/ramanaditya/data- structure-and-algorithms/blob/main/leetcode/binary-search/valid- perfect-square.py
21 https://leetcode.com/problems/first-bad-version/

22 https://github.com/ramanaditya/data- structure-and- algorithms/blob/main/leetcode/binary- search/first-bad- version.py

23 https://leetcode.com/problems/search-a-2d-matrix/

24 https://github.com/ramanaditya/data- structure-and- algorithms/blob/main/leetcode/binary- search/search-a-2d- matrix.py

6.2. Binary Search 25

https://leetcode.com/problems/binary-search/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/binary-search/binary-search.py
https://leetcode.com/problems/valid-perfect-square/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/binary-search/valid-perfect-square.py
https://leetcode.com/problems/first-bad-version/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/binary-search/first-bad-version.py
https://leetcode.com/problems/search-a-2d-matrix/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/binary-search/search-a-2d-matrix.py

Interview Documentation, Release v1.0.0

26

Chapter 6. Searching

CHAPTER

SEVEN
SORTING
Table 1: Sorting Algorithms
Sl | Algorithm Worst Time | Average Best Time Memory Stability
No. Time
1 | Bubble Sort Stable
n? n? n 1
2 | Selection Sort Unstable
n? n? n? 1
3 | Insertion Sort Stable
n? n? n? 1
4 | Merge Sort Stable
n * log(n) n x log(n) n xlog(n) n
5 | Quick Sort Unstable
n *log(n) n * log(n) n? n *log(n)
Note:

« Stable : Relative position of equal elements after sorting remains same.

* In-place Sorting : Sorting Input elements without having backup, thus unsorted form is lost.

27

Interview Documentation, Release v1.0.0

7.1 Bubble Sort

class bubbleSort
Bases: object

bubble_ sort (data)

7.1.1 Description

Important:
TIme Complexity
» Worst Case: n?
* Average Case: n?

e Best Case: n

Space Complexity: O(1)
In Place Sorting
Stable Sorting

7.1.2 Python

def bubble_sort (data) :

for i in range(len(data) - 1):
for j in range (0, len(data) - i - 1):
if datal[j] > datalj + 1]:
datalj], datal[j + 1] = datal[]j + 11,

return data

datalj]

7.1.3 Implementation

7.2 Selection Sort

class selectionSort
Bases: object

selection_sort (data)

28

Chapter 7. Sorting

Interview Documentation, Release v1.0.0

7.2.1 Description

Important:
TIme Complexity

o Worst Case: n?

* Average Case: n?

 Best Case: n?

Space Complexity: O(1)
In Place Sorting
Unstable Sorting

7.2.2 Python

def selection_sort (data) :
for i in range(len(data)):
min_index = i
for j in range(i + 1,
if data[min_index]
min_index = jJ
data[min_index] =

len (data)) :
> datalj]:

datal[i],
return data

data[min_index],

datali]

7.2.3 Implementation

7.3 Insertion Sort

class insertionSort
Bases: object

insertion_sort (data)

7.3.1 Description

Tip:

e Insertion sort is used when number of elements is small.

* It can also be useful when input array is almost sorted, only few elements are misplaced in complete big

array.

Important:

TIme Complexity

» Worst Case: n?

* Average Case: n?

7.3. Insertion Sort

29

Interview Documentation, Release v1.0.0

« Best Case: n?

Space Complexity: O(1)
In Place Sorting
Stable Sorting

7.3.2 Python

def insertion_sort (data) :
for i in range(l, len(data)):
key = datali]

3 =1 -1

while j >= 0 and key < datalj]:
datal[j + 1] = datalj]
J =1

datal[j + 1] = key

return data

7.3.3 Implementation

7.4 Merge Sort

class MergeSort
Bases: object

merge_sort (data)

7.4.1 Description

Important:
TIme Complexity
» Worst Case: n * log(n)
* Average Case: n * log(n)

* Best Case: n x log(n)

Space Complexity: O(n)
In Place Sorting
Stable Sorting

30

Chapter 7. Sorting

Interview Documentation, Release v1.0.0

7.4.2 Python

def merge_sort (data) :
if len(data) > 1:
mid = len(data) // 2
left = data[:mid]
right = data[mid:]

merge_sort (left)
merge_sort (right)

i=0
j =20
k=0

while i < len(left) and j < len(right):

if left([i] < right[j]:
datalk] = left[i]
i+=1

else:
datalk] = right[]]
4= 1

k += 1

while i < len(left):

datal[k] = left[i]
i+=1
k += 1

while j < len(right):

datalk] = right[j]
j +=1
k += 1

7.4.3 Implementation

7.5 Quick Sort

class QuickSort
Bases: object

partition (data, low, high)

quick_sort (data, low, high)

7.5.1 Description

Important:

TIme Complexity
» Worst Case: n * log(n)
 Average Case: n x log(n)

 Best Case: n?

Space Complexity: O(n * log(n))

7.5. Quick Sort

31

Interview Documentation, Release v1.0.0

In Place Sorting
Unstable Sorting

7.5.2 Python

Algorithm for partition

def partition(data, low, high):
pivot = datalhigh]
i = low # To keep the index of element smaller than pivot
j = low # To keep the index of element greater than pivot

while j < high:
if data[j] < pivot:

datalj], datal[i] = datal[i], datalj]
i4+=1
j +=1
data[i], datalhigh] = datalhigh], datali]

return i

Recursive Algorithm for quicksort

def quick_sort (data, low, high):
if low < high:
pivot = partition(data, low, high)
quick_sort (data, low, pivot - 1)
quick_sort (data, pivot + 1, high)

7.5.3 Implementation

32

Chapter 7. Sorting

CHAPTER
EIGHT

8.1 Description

8.1.1 Variations

¢ Same Direction

* Opposite Direction

8.1.2 Implementation

Table 1: LeetCode

TWO POINTERS

SI No Level Questions Solutions Tags

26 Easy Remove Duplicates from | Python Two Pointers
Sorted Array?

189 Easy Rotate Array®’ Python?® Two Pointers

167 Easy Two Sum II - Input array is | Python™ Two Pointers
sorted?

11 Medium | Container With Most Water’! Python?? Two Pointers

238 Medium | Product of Array Except Self> | Python®* Two Pointerss

25 https://leetcode.com/problems/remove-element/
26 https://github.com/ramanaditya/data- structure-and- algorithms/blob/main/leetcode/array/remove-duplicates- from-sorted- array.py
27 https://leetcode.com/problems/rotate-array/
28 https://github.com/ramanaditya/data- structure- and-algorithms/blob/main/leetcode/array/rotate-array.py

29 https://leetcode.com/problems/two- sum-ii-input-array-is-sorted/

30 https://github.com/ramanaditya/data- structure-and-algorithms/blob/main/leetcode/array/two-sum-ii-input- array-is-sorted.py
31 https://leetcode.com/problems/container-with-most-water/
32 https://github.com/ramanaditya/data- structure-and- algorithms/blob/main/leetcode/array/container- with-most- water.py
33 https://leetcode.com/problems/product-of-array-except-self/
34 https://github.com/ramanaditya/data- structure-and- algorithms/blob/main/leetcode/array/product-of-array-except-self.py

33

https://leetcode.com/problems/remove-element/
https://leetcode.com/problems/remove-element/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/remove-duplicates-from-sorted-array.py
https://leetcode.com/problems/rotate-array/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/rotate-array.py
https://leetcode.com/problems/two-sum-ii-input-array-is-sorted/
https://leetcode.com/problems/two-sum-ii-input-array-is-sorted/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/two-sum-ii-input-array-is-sorted.py
https://leetcode.com/problems/container-with-most-water/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/container-with-most-water.py
https://leetcode.com/problems/product-of-array-except-self/
https://github.com/ramanaditya/data-structure-and-algorithms/blob/main/leetcode/array/product-of-array-except-self.py

Interview Documentation, Release v1.0.0

34

Chapter 8. Two Pointers

Part 111

Networking

35

CHAPTER
NINE

IP ADDRESS

 IP Address is assigned to an Interface port

Important: 8 bits = 1 Byte = 1 Octet

9.1 IPv4

* 32 bits (4 byte) address format.

37

Interview Documentation, Release v1.0.0

38

Chapter 9. IP Address

Part IV

Interview

39

CHAPTER
TEN

INTERVIEW PREPARATION

10.1 Interview Best Practices

* Be Authentic
— Don’t lie but this does not mean you have to tell everything.
— Be Strategic and concise.
* Sell Yourself
— Focus on preparing authentic answers that highlight your greatest strengths.
— Tell good, authentic, relevant stories about your experience.
* Be Concise
— Don’t bore interviewers with the long answers.

— Don’t go beyond 2 minutes for a single answer.

If you bore them, you lose them.

Emphasise your most impressive points.

¢ Show Enthusiasm
— Demonstrate convincing enthusiasm for the company and the position.
— Ask Questions

— Be Motivated

10.2 Common Mistakes

* Lack of Professionalism
— Never be late for an interview
— How you Dress matters.
— How you present yourself.
— Job Etiquette like saying Thank You.
* Lack of Preparation
— Analyzing Job Interviews
— Thinking to key questions before Job Interview
— Good Behavioural Stories
* Lack of Content

— Lame descriptions

41

Interview Documentation, Release v1.0.0

— Lecck of Preparation
— Don’t give generic answers.

* Negativity

10.3 Types of Inerviews

10.3.1 Phone Interview

¢ The one to one in Person Interview
e The Video Interview
¢ The Panel Interview

* The Group Interview

10.3.2 Types of Interviewers

 External Recruiter: Doesn’t work for the company but can assign people to the company and get paid.
¢ Internal Recruiter or HR Rep: Part of the Company and generally check for the authenticity and personality.
» The Hiring Manager: Can dig deeper into the technical Questions and even for the personality.

¢ Senior Level Management: More likely to see the work or hands-on experience and will check for the
potential people.

* Direct Report: You might be interviewed with someone who will work for you.

10.3.3 You need to do

* Building Report
» Showing Respect for the current Team
» Show respect for the way they do things now.

* Hope for the best.

10.4 Analyzing the Job Description

Note: A written description of the qualifications, duties and responsibilities of a position.

* Work your network to find out more about the position.
* Try searching the job description for the similar roles at similar companies.

» Customizing your approach is the key to standing out from the pack.

42 Chapter 10. Interview Preparation

Interview Documentation, Release v1.0.0

10.4.1 To create your Job Description

* Identify Competencies: Highlight the description of the position multiple times in form of your work expe-

rience.

¢ Identify Themes: Most important of your work should be at the top which will also include the demand of

the company.

* Identify your Selling Points: Emphasize your strengths and be prepared for the weaknesses.

¢ Identify Gaps or Issues: be Honest, Identify your weakness, what could be perceived as weaknesses by

others.

* Anticipate Question

10.5 Answering Inappropriate Questions

Tip:
¢ Decline or deflect the questions that include the following topics

* Gender, Age, Marital Status, Where you are from, originally.

Where you are from originally? I think I am <Your current location>, since I residing here for a long time.

I don’t think that’s too relevant, but I would love to tell you more about my programming experience.

10.6 General Standards

* Dress a little bit more formally, than the company’s dress code.
* Hair and nails should be clean and groomed

* Your dress should be clean and wrinkles free.

* Wear knee lengths skirts.

* If you are not asked to wear suit, avoid it.

» At last make it your choice.

10.6.1 Why dressing is important

* To reduce distractions
* Not to let people judge you based upon your dress.

* They could listen more about your skills.

10.5. Answering Inappropriate Questions

43

Interview Documentation, Release v1.0.0

10.7 Overcoming Nerves

* Do your homework
— Practice more and keep a not of your points
— Don’t repeat the same words time and again
* Accentuate the Positive
— Fake Smile can create positive impact but only if you can smile internally.
— Don’t think more or out of context during the interview process.

¢ Psyche yourself up

44 Chapter 10. Interview Preparation

CHAPTER
ELEVEN

NETWORKING

Important: Networking is interacting with others to exchange information and develop professional or social

contacts.

» Seeking support from people who already know and respect you

¢ Define your network

1.
2.
3.
4.
5.

Name

How you are connected
Potential

Reasons

Contacts

* Expand your thinking
e Reach Out

¢ LinkedIn

Strong Connections: Consider these details
* Clarify what you are looking for
* Build Credibility
Ask open ended questions
* Ask for Introductions
% Be appreciative
* Note next steps
Medium Connections
Low Connections
Targeting Specific Employers: Reach out to the employees of your target companies.
How to Contact: Don’t spam out for messages just for networking favour.

Following Up: Thank them for even their smallest help. Thank them when you get a job.

Setting up profile: put clear, professional photo.

About Section: Write a nice summary without using generic words like experienced, learning etc.
Update it regularly.

How to be found:
* Change the public url to your name or username.

« Adapt Public Visibility

45

Interview Documentation, Release v1.0.0

% Use Keywords
x Complete your Contact Details
List only relevant Skills
— LinkedIn Contacts:
% Your Contacts
% Don’t Spam
Informational Interviews
— Finding Jobs
— Jumping Gatekeepers
* Keep a clean Web Presence
— Don’t use bad spelling or grammars.
— Personal Website
— GitHub
+ Fill out your profile
+ Be mindful about pinned repository
% Cleaned up your starred repository

* Include an informative readme

46

Chapter 11. Networking

Part V

Technical Interview

47

CHAPTER
TWELVE

PYTHON INTERVIEW QUESTIONS

Memory Management in Python Python is a high-level programming language that’s implemented in the C
programming language. The Python memory manager manages Python’s memory allocations. There’s a
private heap that contains all Python objects and data structures. The Python memory manager manages the
Python heap on demand. The Python memory manager has object-specific allocators to allocate memory
distinctly for specific objects such as int, string, etc... Below that, the raw memory allocator interacts with
the memory manager of the operating system to ensure that there’s space on the private heap. The Python
memory manager manages chunks of memory called “Blocks”. A collection of blocks of the same size
makes up the “Pool”. Pools are created on Arenas, chunks of 256kB memory allocated on heap=64 pools.
If the objects get destroyed, the memory manager fills this space with a new object of the same size. Methods
and variables are created in Stack memory. A stack frame is created whenever methods and variables are
created. These frames are destroyed automatically whenever methods are returned. Objects and instance
variables are created in Heap memory. As soon as the variables and functions are returned, dead objects will
be garbage collected. It is important to note that the Python memory manager doesn’t necessarily release the
memory back to the Operating System, instead memory is returned back to the python interpreter. Python
has a small objects allocator that keeps memory allocated for further use. In long-running processes, you
may have an incremental reserve of unused memory.

49

Interview Documentation, Release v1.0.0

50

Chapter 12. Python Interview Questions

Part VI

Resources

51

CHAPTER
THIRTEEN

13.1 Books

o CLRS®

* Cracking the Coding Interview>°

* Elements of Programming Interviews>’

13.2 Competitive Coding

 Codechef®
* Codeforces®
* HackerEarth*
 HackerRank*!

o Leetcode*?

13.3 Online Study Materials

* Free Code Camp™
o GeeksforGeeks*

35 https://mitpress.mit.edu/books/introduction-algorithms- third-edition
36 http://www.crackingthecodinginterview.com/

37 https://elementsofprogramminginterviews.com/

38 https://www.codechef.com/

39 https://codeforces.com/

40 https://www.hackerearth.com/challenges/

41 https://www.hackerrank.com/

42 https://leetcode.com/

43 https://www.freecodecamp.org/

4 https://www.geeksforgeeks.org/

RESOURCES

53

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
http://www.crackingthecodinginterview.com/
https://elementsofprogramminginterviews.com/
https://www.codechef.com/
https://codeforces.com/
https://www.hackerearth.com/challenges/
https://www.hackerrank.com/
https://leetcode.com/
https://www.freecodecamp.org/
https://www.geeksforgeeks.org/

Interview Documentation, Release v1.0.0

54

Chapter 13. Resources

CHAPTER
FOURTEEN

CREDITS

We recognise and thank everyone who contributed or whose code or related documentation or hyperlink has been
used in the documentation.

There might be cases when your name might not be in the list please feel free to raise a PR to the repository along
with the details of your work.

Table 1: We thank You

Sl. | Name Contact
No.
1 Pamela Skillings
2 | William Fiset

55

Interview Documentation, Release v1.0.0

56

Chapter 14. Credits

CHAPTER
FIFTEEN

COLLABORATORS

We really thank each member of our team, who have made this documentation really helpful for the people.

For their unique contribution we are mentioning them on this page.

Table 1: We thank You

Sl.

No.

Name

Contact

Aditya Raman®

LinkedIn®, GitHub*’

4 https://www.ramanaditya.com

46 https://www.linkedin.com/in/ramanaditya/

47 https://github.com/ramanaditya

57

https://www.ramanaditya.com
https://www.linkedin.com/in/ramanaditya/
https://github.com/ramanaditya

Interview Documentation, Release v1.0.0

58

Chapter 15. Collaborators

CHAPTER
SIXTEEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

59

Interview Documentation, Release v1.0.0

60

Chapter 16. Indices and tables

PYTHON MODULE INDEX

a

Array.Array,S
Array.boyer_moore_voting_algorithm, 17

LinkedList.floyds_tortoise_and_hare,
19
LinkedList.singlyll,9

S

searching.binary_search, 24
searching.linear_search, 23
Sorting.bubble_sort, 28
Sorting.insertion_sort, 29
Sorting.merge_sort, 30
Sorting.quick_sort, 31
Sorting.selection_sort, 28
stack.stack, 7

61

Interview Documentation, Release v1.0.0

62

Python Module Index

A

add_at_index () (LinkedList method), 9

Array.Array (module), 5

Array.boyer_moore_voting algorithm
(module), 17

array_operation (class in Array.Array), 5

B

binary_search () (BinarySearch method), 24

BinarySearch (class in searching.binary_search),
24

boyer_moore_voting_algorithm() (in mod-
ule Array.boyer_moore_voting_algorithm),
17

bubble_sort () (bubbleSort method), 28

bubbleSort (class in Sorting.bubble_sort), 28

C

check_cycle ()
19

createll () (FormLinkedList method), 19

cycle_node () (FloydTortoiseAndHare method), 19

D

delete_at_end () (array_operation method), 5
delete_at_index () (array_operation method), 5
delete_at_index () (in module
LinkedList.singlyll), 13
delete_at_index () (LinkedList method), 10
delete_ele () (array_operation method), 5
delete_head () (in module LinkedList.singlyll), 12
delete_tail () (in module LinkedList.singlyll), 12
display () (array_operation method), 5
display () (Stack method), 7

F

FloydTortoiseAndHare (class in
LinkedList.floyds_tortoise_and_hare), 19

FormLinkedList (class in
LinkedList.floyds_tortoise_and_hare), 19

(FloydTortoiseAndHare method),

G

get () (array_operation method), 5
get () (LinkedList method), 10
get_top () (Stack method), 7

INDEX

insert_at_end () (array_operation method), 5

insert_at_head() (in module
LinkedList.singlyll), 11

insert_at_head () (LinkedList method), 10

insert_at_index () (array_operation method), 5

insert_at_index () (in module
LinkedList.singlyll), 11
insert_at_tail () (in module

LinkedList.singlyll), 11
insert_at_tail () (LinkedList method), 10
insertion_sort () (insertionSort method), 29
insertionSort (class in Sorting.insertion_sort), 29

L

linear_search () (LinearSearch method), 23

LinearSearch (class in searching.linear_search),
23

LinkedList (class in LinkedList.singlyll), 9

LinkedList.floyds_tortoise_and_hare
(module), 19

LinkedList.singlyll (module), 9

M

merge_sort () (MergeSort method), 30
MergeSort (class in Sorting.merge_sort), 30

N

Node (class in LinkedList.floyds_tortoise_and_hare),
19
Node () (in module LinkedList.singlyll), 10

O

overflow () (Stack method), 7

P

partition () (QuickSort method), 31
pop () (Stack method), 7
push () (Stack method), 7

Q

quick_sort () (QuickSort method), 31
QuickSort (class in Sorting.quick_sort), 31

S

search () (array_operation method), 5

63

Interview Documentation, Release v1.0.0

search () (in module LinkedList.singlyll), 10
search () (LinkedList method), 10
searching.binary_search (module), 24
searching.linear_search (module), 23
selection_sort () (selectionSort method), 28
selectionSort (class in Sorting.selection_sort), 28
Sorting.bubble_sort (module), 28
Sorting.insertion_sort (module), 29
Sorting.merge_sort (module), 30
Sorting.quick_sort (module), 31
Sorting.selection_sort (module), 28
Stack (class in stack.stack), 7

stack.stack (module), 7

U

underflow () (Stack method), 7

64

Index

	I Data Structures
	Array
	Static Array
	Complexity
	Array Operations
	Important Problems

	Stack
	Complexity
	Stack Operations
	Important Problems

	Linked List
	Where are they used
	Pros and Cons
	Complexity
	Node
	Defining the node for a Linked List

	Search
	Insert
	Insert at head
	Insert at Tail
	Insert at an Index

	Delete
	Delete at head
	Delete at Tail
	Delete at Index

	Important Problems
	Leetcode Problems

	II Algorithms
	Array
	Boyer–Moore majority vote algorithm
	Description
	Python
	Implementation

	Linked List
	Floyd’s Tortoise and Hare
	Description
	Python
	Implementation

	Searching
	Linear Search
	Description
	Python
	Implementation

	Binary Search
	Description
	Python
	Implementation

	Sorting
	Bubble Sort
	Description
	Python
	Implementation

	Selection Sort
	Description
	Python
	Implementation

	Insertion Sort
	Description
	Python
	Implementation

	Merge Sort
	Description
	Python
	Implementation

	Quick Sort
	Description
	Python
	Implementation

	Two Pointers
	Description
	Variations
	Implementation

	III Networking
	IP Address
	IPv4

	IV Interview
	Interview Preparation
	Interview Best Practices
	Common Mistakes
	Types of Inerviews
	Phone Interview
	Types of Interviewers
	You need to do

	Analyzing the Job Description
	To create your Job Description

	Answering Inappropriate Questions
	General Standards
	Why dressing is important

	Overcoming Nerves

	Networking

	V Technical Interview
	Python Interview Questions

	VI Resources
	Resources
	Books
	Competitive Coding
	Online Study Materials

	Credits
	Collaborators
	Indices and tables
	Python Module Index
	Index

